

Smart It Easy

Implementing Smart Building Technology

Cédric MARCHAND¹ (<u>mar@ecam.be</u>), Salim BOUTLENDJ¹ (<u>17162@student.ecam.be</u>)

1: ECAM

Context: ECAM building

- ECAM building: combination of an **old** (80s) and a **new** building (10s) (Fig. 1)
- Large spaces: auditorium (300 seats), construction hall, offices and computer rooms
- Poor energy and air quality management = unpleasant feeling for people inside

Figure 1 – ECAM (new building (I.), old building (r.))

Objectives: data collection/diagnosis/adjustment

- Data collection (T°, humidity, CO₂)
- **Diagnosis**: characterizing the evolution of these indicators as precisely as possible (with additional sensors)
- Adjustments and suggestion for improving heat and air management of the building

Method

- Selection of most interesting rooms to analyze
 - Large auditorium, computer room, hallway
 - Selection criteria: diversity of thermic properties
- Creation of a **secondary network due** to complexity to integrate a solution in existing network
- Data collection on a custom platform
 - 80 sensors in 3 rooms
- Data analysis and implementation of a day-to-day overview (Fig. 2)

Figure 2 – Temperature data collected by sensors

- Diagnosis
- Suggestion for heat and air control improvement
- Implementation of solution

Protocol

• Sensors send data to their respective gateways (Fig. 3)

Figure 3 – IoT architecture

- Protocols used: Wireless Mbus, LoRa and Bluetooth Low Energy (Table 1)
- Creation of our own private LoRaWAN network and server (to be the unique owner of all data in partnership with GM Electronics)
- Data forwarded through GPRS, WIFI and Ethernet depending on the gateway location, network and availability
- Data centralization and analysis: development of a microservice architecture with a rest api to address the use of different types of databases (Mysql Influxdb)

Techno	Sensor type	Data rate	Broadcast range	Autonomy	Deployement difficulty
WM Bus	T° and H (static)	10 - 100 Kbps	In : 100m Out : 500m	5 years	medium
LoRa	CO2	0.1 - 50 Kbps	In : 1Km Out : 15Km	10 years	hard
BLE	T° and H (additional sensors)	1 - 3 Mbps	In : ≤100m Out : 700m	2 years	easy
Table 1 – Protocol comparison					

Next steps

- 1. Data collection (6 months)
- 2. Data displayed on a suitable dashboard (Fig. 2) in each room in real time
- 3. Data analysis models **assessment** with former/current dataset
- 4. Use of machine learning algorithms to create predictive models and suggestions
- 5. Creation of a survey on thermal comfort
- → Collected votes used to optimize models within the PMV PPD framework
- 6. Creation of an easy **solution** with Docker and configuration scripts running on Linux environments

Partnerships

